Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

Paper 3 Advanced Practical Skills 1
May/June 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

In this experiment you will determine the relative formula mass of a copper salt by titration.
A solution of the copper salt reacts with excess acidified potassium iodide, producing iodine. This iodine is then titrated with aqueous sodium thiosulfate, using starch indicator.

FA 1 is an aqueous solution of the copper salt prepared by dissolving 26.0 g of the salt to make $1.00 \mathrm{dm}^{3}$ of solution.
FA 2 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FA 3 is aqueous potassium iodide, KI.
FA 4 is 0.110 moldm ${ }^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
starch indicator
(a) Method

- Fill the burette with FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Use the measuring cylinder to add approximately $10 \mathrm{~cm}^{3}$ of FA 2 to the same conical flask.
- Use the measuring cylinder to add approximately $20 \mathrm{~cm}^{3}$ of FA 3 to the mixture in the conical flask. The mixture will now be a brown colour, due to iodine produced in the reaction.
- Begin your rough titration by adding FA 4 from the burette until the mixture becomes light brown.
- Add 10 drops of starch indicator. The mixture will become darker.
- Continue titrating until the mixture becomes an off-white colour. This is the end-point.
- Add one drop of starch indicator to check that no traces of dark colour are produced. If the mixture stays off-white, the titration is finished. If some dark colour is produced, because iodine is still present, continue the titration.
- Record your burette readings and the rough titre in the space below.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 4 added in each accurate titration.

Keep FA 3 and starch indicator for use in Question 3.

(b) From your accurate titration results, obtain a suitable value for the volume of FA 4 to be used in your calculations.
Show clearly how you obtained this value.

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, in the volume of FA 4 calculated in (b).

$$
\text { moles of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=
$$

\qquad mol
(ii) Balance the equation for the reaction of iodine with sodium thiosulfate. State symbols are not required.

$$
\ldots . . . \mathrm{I}_{2}+\ldots \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \ldots \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\ldots \mathrm{NaI}
$$

(iii) Using your answer to (ii), calculate the number of moles of iodine that reacted with the number of moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ calculated in (i).
moles of $\mathrm{I}_{2}=$ \qquad mol
(iv) lodine, I_{2}, is produced in the reaction between FA 1 and FA 3. FA 3 is in excess.

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CuI}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{aq})
$$

Using your answer to (iii), calculate the number of moles of copper(II) ions in $25.0 \mathrm{~cm}^{3}$ of FA 1.

$$
\text { moles of } \mathrm{Cu}^{2+} \text { ions }=
$$

(v) Using your answer to (iv) and the information on page 2, calculate the relative formula mass of the copper compound in FA 1.
\qquad

2 Malachite is a basic form of copper carbonate in which copper hydroxide is also present. The accepted chemical formula of malachite is $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

When malachite is heated, it decomposes as shown.

$$
\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 2 \mathrm{CuO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

In this experiment, you will heat malachite to decompose it and use your results to obtain evidence about the accepted formula of malachite.

FA 5 is malachite, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

(a) Method

Read through the method before starting any practical work.
In the space below prepare a single table for your results of Experiments 1 and 2.

Experiment 1

- Weigh a crucible with its lid and record the mass.
- Add between 2.5 g and 3.0 g of FA 5 to the crucible. Weigh the crucible with FA 5 and lid and record the mass.
- Place the crucible on the pipe-clay triangle.
- Heat the crucible and contents gently for about two minutes, with the lid on.
- Remove the lid and continue heating gently for about three minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes. Then reweigh the crucible and contents with the lid on. Record the mass.
- While the crucible is cooling, you may wish to begin work on Question 3.
- Calculate and record the mass of FA 5 used and the mass of residue obtained.
- State the observation(s) you made while the reaction was taking place.
\qquad
\qquad

Experiment 2

Repeat the method used in Experiment 1, using between 1.5 g and 2.0 g of FA 5 in the second crucible.

Results

I	
II	
III	
IV	
V	
VI	

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Use your results from Experiment 1 to calculate the number of moles of copper oxide, CuO , obtained as residue.
Use the Periodic Table on page 12 for any data you may require.
moles of CuO obtained in Experiment $1=$ \qquad mol
(ii) Use your answer to (i), the equation on page 4 and the mass of FA 5 you used in Experiment 1, to calculate the relative formula mass, M_{r}, of malachite.
M_{r} of malachite (from Experiment 1) $=$ \qquad
(iii) Use your results from Experiment 2 to calculate another value for the relative formula mass, M_{r}, of malachite.

$$
M_{\mathrm{r}} \text { of malachite (from Experiment 2) }=
$$

\qquad
(iv) Use data from the Periodic Table to calculate the relative formula mass, M_{r}, of malachite from its accepted formula, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

$$
M_{\mathrm{r}} \text { of malachite (from formula) }=
$$

\qquad
(v) If the relative formula mass of malachite obtained from either of your experiments is within 2.5% of the answer in (iv), this is good evidence that the accepted formula, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, is correct.

Show by calculation whether either of your experiments supports the accepted formula.
(c) (i) State one way of improving the accuracy of the experimental method, using the same masses of FA 5.
Explain the benefit of your improvement.
\qquad
\qquad
\qquad
\qquad
(ii) Explain why you would expect Experiment 1 to be more accurate than Experiment 2.
\qquad
\qquad
\qquad
[Total: 14]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(a) FA 6 is another salt of copper. The anion present is one of those listed in the Qualitative Analysis Notes.
(i) Transfer a small spatula measure of FA 6 into a hard-glass test-tube.

Heat gently at first, then heat strongly, until no further change occurs.
Record all your observations below.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest the chemical formula of FA 6.
\qquad
(b) (i) Dissolve the remainder of FA 6 in an approximately 10 cm depth of distilled water in a boiling tube.

FA 7 is a solution of a salt containing one anion from those listed in the Qualitative Analysis Notes.
Two cations are also present.
Carry out the tests described below using separate portions of solutions FA 6 and FA 7.
Record your observations in the table.

test		

(ii) What can you deduce about solution FA 7 from its reaction with magnesium? Explain your answer.
\qquad
\qquad
(iii) Give the ionic equation for the reaction of the metal cation in FA 7 with aqueous sodium hydroxide. Include state symbols.
\qquad
(iv) What type of reaction took place when aqueous potassium iodide was added to FA 7? Use your observations to help you explain your answer.
\qquad
\qquad
\qquad
(v) The observation you made when aqueous silver nitrate was added to FA 7 does not allow the anion in FA 7 to be identified with certainty.

Explain why you cannot be certain about the identity of the anion.
\qquad
\qquad
\qquad
(vi) A student suggested that the anion in FA 7 could be identified with more certainty if excess ammonia solution was added after the aqueous silver nitrate.

Explain why this suggestion is not correct.
\qquad
\qquad
\qquad
[Total: 14]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\operatorname{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, I-(aq)	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{A} l$ foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	毋 ¢ ¢
๕吅	
	® 을
	\＆¢ 镸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

